22/10/18 – blog post – Passing light through the spiral – Matt copeland
Plywood acrylic composite –
The last two weeks have been mostly material research. Last week I started with a composite – plywood acrylic plywood – material and had laser cut the spiral design allowing the 2d to 3d movement. The layers bonded well with a spray contact adhesive even after being laser cut. I hoped the clear acrylic layer would transport light up the spiral creating an even glow as the spiral was pulled from the rest of the board. In darkness the light was obvious on the first ring of the spiral but limited when passing any further up the coil and in light or partial darkness it was hard to identify the light. In the darkness the light was impressive when the spiral is pushed inwards. A bowl of light is created and there is an impressive transformation as the two-dimensional panel shows little to no sign of any light until interacted with. I tried a lamination of mirror surrounding an acrylic centre. The mirror was meant to direct the light inwards and towards the end of the coil. This didn’t work as any glue I used stopped the light passing from the acrylic to the mirror layer. The layers also didn’t bond together well.
Electro luminescent wire –
In Wednesdays studio class Geoffrey Mann showed me an alternative lighting source, electroluminescent wire. The wire has a phosphor centre that glows when electrically charged. It can be bought in many different colours and in strands as thin as 1.6mm (Castle, 2018). I bought a few lengths of the wire at 2.5 mm and a battery pack to power them then began designing a means of housing the wire within the coil.
Process to embed wire –
Because the acrylic wasn’t passing the light up the spiral in the way I wanted I had to consider other ways. I began experimenting on the laser by first drawing a spiral that had a void cut out of the centre to house the EL wire. This was unsuccessful as it meant post cut lamination and the sections warped on the laser when so many cuts were made so close to each other. I did some engraving tests and realised I could engrave a channel to house the wire rather than cutting. This would leave the acrylic solid long enough until the final spiral was to be cut, and I could also have a layer of plywood pre laminated then engrave and then cut both layers without worrying about lining all three layers post cut. I have experimented with power and cutting speed on the laser in order to cut the correct depth in the acrylic I worked out that at 100mm/s speed and 10 mAh of power, I could cut 1.5mm deep. For the 2.5mm wire I had, I would need two passes. On small test pieces I experimented with the engraved channel being cut into the wood rather than the acrylic layer. The MDF I used to trial this engraved better than the acrylic and more material was removed in one pass. It was difficult to achieve the correct depth without breaching the thickness of the material when working in such small margins. This test piece in the end, worked and the light was even and bright inside the coil. The MDF was fairly weak though and on such a small scale and with glue residue from the post cut lamination, the spring motion is non-existent. Although the engraving of the acrylic is time consuming it is a better option. The material is stronger when leaving thin walls and the light is more vivid when the EL wire is at the core of the lamination layer it will be released from.
Movement –
I spent some time during the week researching materials that could potentially at movement to my object. I was hoping to find a material that could be laminated into the composite I had, be laser cut and when electrically charged – like the EL wire – react and move. I had a rough idea of this being done before in things like artificial muscles but didn’t know the exact name. I did some online research looking for electro reactive materials. There is a lab at Columbia 3D printing a synthetic tissue. (Shah, 2018). These materials are difficult if not impossible to acquire.Geoffrey Mann suggested that the most important part of the product and tests I had designed was the interactions with the materials and the motion of the spring. Tests with the first acrylic lamination showed that the interaction turned the light on and off and perhaps contact with the object is more important than having it move by itself. The interaction could also be the activation.
Spiral –
the spiral I designed is the same width for the whole length of the coil this means there is an uneven spring as the radius of the spiral gets smaller. To combat this, I would have to design a tapered spiral that gets smaller towards the centre meaning less material resistance and more flex I experimented with different cuts on the laser. Although the tapered spiral has an even spring, I feel the motion isn’t as pleasing as the constant width spiral. This would have to be tried on a multilayer lamination to get a true reflection of the action.
Existing design research –
“Unconscious Form” – John Sorensen-Jolink
Sorensen-Jolink’s design is a lighting performance piece photographed with dancers for the series ‘Unconscious Forms” (Howarth, 2018). The curved oblong sections are made from cast resin with imperfections and impurities added to manipulate the light. (Collection, 2018)
(Collection, 2018)
“Pocket Light” – Ryan Hark
The 2-Dimensional bank card sized light folds into a 3d form and activates the light bulb shaped clear acrylic part. There is a switch mechanism when the two parts separate.
(creative Product Design, 2018)
Castle, A. (2018). How To Get Started with Electroluminescent (EL) Wire – Tested.com. [online] Tested. Available at: https://www.tested.com/old-categories/how-to/454264-how-get-started-electroluminescent-el-wire/ [Accessed 16 Oct. 2018].
Shah, S. (2018). Synthetic muscle breakthrough could lead to ‘lifelike’ robots. [online] Engadget. Available at: https://www.engadget.com/2017/09/21/synthetic-muscle-soft-robot-breakthrough/?guccounter=1 [Accessed 12 Oct. 2018].
Collection, P. (2018). Product Live: Coil + Drift’s John Sorensen-Jolink Reveals the Choreography Behind the Spring 2018 Collection. [online] Interior Design. Available at: https://www.interiordesign.net/articles/15515-product-live-coil-drift-s-john-sorensen-jolink-reveals-the-choreography-behind-the-spring-2018-collection/ [Accessed 20 Oct. 2018].
Howarth, D. (2018). Coil + Drift’s furniture and lighting is designed from a dancer’s perspective. [online] Dezeen. Available at: https://www.dezeen.com/2018/03/21/coil-drift-spring-collection-unconscious-forms-furniture-lighting/ [Accessed 22 Oct. 2018].
Creative Product Design. (2018). sendpoints.